The Arc of Milky Way in the Twilight with the Moon and Zodiacal Light above VLT
The entire Arc of Milky Way full of gas and dust can be seen in this panoramic lovely view from the southern sky, captured in the end of nautical twilight, above the Very Large Telescope platform. At left of the small tower, above the horizon, the bright object visible is not a star itself, but the great globular cluster Omega Centauri. Closer to left in the beginning of Milky Way arc, are spotted the bright stars of Alpha and Beta Centauri. In the middle of the image, the strong light of crescent moon is shining above the Antu telescope, the first one. Above the moon, we can see the planet Saturn, the orange star Antares from Scorpius constellation, and the dark streaks that are part of Rho Ophiuchi cloud complex, which connects this region to the main arm of Milky Way with more then 200º from side to side. In the background of this same region, a faint white light is visible, called the Zodiacal Light. In the foreground at right, we can see the Yepun telescope, reflecting a silver color coming from the moon reflection on its metallic surface. In the extremely right edge of the image, the Andromeda galaxy is even visible as an elongated diffuse dot.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile
Daylight view from Cerro Paranal
A daylight view in the desert from Paranal summit, where stands the VLT platform. The Atacama Desert is the driest place on Earth. The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Blue Sky above the Auxiliary Telescopes on VLT
Blue Sky above the Auxiliary Telescopes on VLT The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Blue Sky above the Auxiliary Telescopes on Paranal Platform
Blue Sky above the Auxiliary Telescopes on Paranal Platform The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Paranal Summit with VLT in Daylight
A daylight view in the desert from Paranal summit, where stands the VLT platform. The Atacama Desert is the driest place on Earth. The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Earthshine above Antu VLT Telescope
Lunar Earthshine above Antu VLT Telescope, during the nautical twilight. The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.
The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
A Romantic Scene in a Lovely Sky
In this colorful lovely scene captured at the twilight, we can see two skywatchers enjoying his passion about the Universe, with a Crescent Moon shining between the clouds and above the Auxiliary Telescopes (ATs) of VLT.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
AllSky of VLT Yepun
In the background of this fish-eye fulldome picture, at the left side of Yepun VLT Telescope, we can see the Large and Small Magellanic Clouds, while in center right of the image, the Zodiacal Light is coming up above the Milky Way that is lying behind the horizon.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Cerro Paranal Shadow projected in Cerro Armazones
Above the horizon we can see Cerro Armazones mountain illuminated by the sunset reddish color that is reflected in the land and high clouds, also with the projected shadow of Cerro Paranal. With an altitude of 3060 meterss in the central part of Chiles Atacama Desert, some 130 kilometers south of the town of Antofagasta and about 20 kilometers from Cerro Paranal, home of ESOs Very Large Telescope. Cerro Armazones will be the baseline site for the planned 39-metre-class European Extremely Large Telescope (E-ELT), with a planned construction period of about a decade. The telescope’s “eye” will be almost half the length of a soccer pitch in diameter and will gather 15 times more light than the largest optical telescopes operating today. The telescope has an innovative five-mirror design that includes advanced adaptive optics to correct for the turbulent atmosphere, giving exceptional image quality. The main mirror will be made up from almost 800 hexagonal segments.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Skygazing on Cerro Paranal Observatory
A guide from ESO is relaxing and enjoying the beautiful and impressive sky of Cerro Paranal while is waiting for a better condition in the weather forecast. In the Background, an unusual cloudy sky is hiding part of the Milky Way, while the moon shines behind the moving clouds, illuminating the closed dome of the Auxiliary Telescopes (ATs) of 1.8 m aperture.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Moon Corona in the Twilight of Very Large Telescope
After sunset a partial cloudy sky can promote the appearance of a beautiful show of colors, as well as some optical phenomenon, specially if we have a night of Moonlight that can show an effect called “Corona”, produced by the diffraction of light coming from the Moon by individual small water droplets and sometimes tiny ice crystals of a cloud. In the foreground, we can see three of four movable Auxiliary Telescopes available in the Very Large Telescope platform.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Eta Carinae above the Dome of Residencia
The incredibly dark and transparent sky of Paranal, in the Atacama Desert, Chile, is the perfect place to see the bright emission nebula Eta Carinae (almost in the center of the image). Below we also can see the violet-red color coming from the Running Chicken Nebula (IC2944) and below the dark band of clouds and above the horizon, is also visible the red-hued giant star Gacrux as well as the blue-hued giant star Mimosa, both from the Southern Cross constellation. The hazy atmosphere works as a natural diffuse filter, enhancing the saturation and revealing the real color temperature of each stars. More bluish they are, more hottest is their temperature. The orange-red stars, are coldest. The white dome is the Residencia for astronomers that are working on VLT Telescopes operated by ESO.
Image taken taken in 17/10/2015 from Cerro Paranal, Atacama desert, Chile.
Two Bright Magellanic Clouds above the Auxiliary Telescopes of VLT
In the foreground we can see three of four movable Auxiliary Telescopes of 1.8 meters available in the VLT platform, operating with the dome open. In the background and above the telescopes lies the Large (LMC) and Small (SMC) Magellanic Clouds showing its details and structure. Magellanic Clouds are two satellite galaxies from our own Milky Way.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
A Panoramic view to the top of Cerro Paranal
Panoramic view from VISTA telescope to the top of Cerro Paranal (at left) where it is located the VLT platform. In the right side we can see the Milky Way trying to show up behind a dark band of clouds, also covering the Moonset. The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.
Image taken taken in 17/10/2015 from Cerro Paranal, Atacama desert, Chile.
AllSky view of the Milky Way Lying in the horizon of VLT
This fish-eye fulldome image shows the Milky Way lying parallel to the horizon in the background of the The Very Large Telescope (VLT) consisting of four Unit Telescopes with main mirrors of 8.2m diameter, known as Antu, Kueyen, Melipal and Yepun (at right).
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Ghostly Shapes on the Starry Sky of VLT
After sunset a partial cloudy sky can promote the appearance of a beautiful show of colors, specially if we have a night of Moonlight that can illuminate and show a strange game of ghostly shapes in the clouds, combined with a starry sky as a background. In the foreground, we can see three of four movable Auxiliary Telescopes available in the Very Large Telescope platform.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Green airglow and Auxiliary Telescopes of VLT
In the foregroound we can see three of the four movable Auxiliary Telescopes of 1.8 meters available in the VLT plataform, operating with the dome open, while in the background of a starry sky we can observe a strong green airglow.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Gegenschein in a Fulldome view of Cerro Paranal
In the foreground, we can see the white Meteorological Tower of Paranal. The small dome contains a telescope dedicated to monitoring the atmospheric seeing conditions, known as a Differential Image Motion Monitor (DIMM.) In the sky at the upper left side of the this fish-eye (fulldome) picture, we can see the Gegenschein, that is a faint brightening of the night sky in the region of the antisolar point. like the zodiacal light, the gegenschein is sunlight scattered by interplanetary dust. Most of this dust is orbiting the Sun in about the ecliptic plane. It is distinguished from zodiacal light by its high angle of reflection of the incident sunlight on the dust particles. In the upper right side, is also visible the Large Magellanic Cloud (LMC) and above it, the Small Magellanic Cloud (SMC). Envolving the entire sky, we can see the presence of green airglow.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Reddish Airglow in a Fulldome view of Very Large Telescope
In this fish-eye fulldome picture, we can see a partial cloudy sky, that can promote sometimes the appearance of a beautiful show. Specially, if we have a night of Moonlight that can illuminate and show a strange game of ghostly shapes in the clouds. In the background a starry sky with a shy Milky Way is showing a strong presence of reddish airglow in the opposite direction of the Very Large Telescope.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Belt of Venus above the DIMM tower in Cerro Paranal
In the foreground, we can see the white Meteorological Tower of Paranal. The small dome contains a telescope dedicated to monitoring the atmospheric seeing conditions, known as a Differential Image Motion Monitor (DIMM.) In the background is strongly visible the Earth’s shadow, the shadow that the Earth itself casts on its atmosphere. This shadow is visible in the opposite half of the sky to the sunset or sunrise, and is seen right above the horizon as a dark blue band. Immediately above, a pink band that is visible above the dark blue of the Earth’s shadow is called “Belt of Venus”, and is caused by backscattering of refracted sunlight due to fine dust particles high in the atmosphere.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Atacama Desert View with Cerro Armazones
From left to right and above the horizon we can see in this panoramic view of Atacama desert, the Cerro Armazones mountain, illuminated by the sunset reddish color that is reflected in the land and high clouds, coming from the right edge of the image in the opposite direction, where it is located the Pacific Ocean. With an altitude of 3060 meters in the central part of Chiles Atacama Desert, some 130 kilometers south of the town of Antofagasta and about 20 kilometers from Cerro Paranal, home of ESOs Very Large Telescope. Cerro Armazones will be the baseline site for the planned 39-meter-class European Extremely Large Telescope (E-ELT), with a planned construction period of about a decade. The telescope’s “eye” will be almost half the length of a soccer pitch in diameter and will gather 15 times more light than the largest optical telescopes operating today. The telescope has an innovative five-mirror design that includes advanced adaptive optics to correct for the turbulent atmosphere, giving exceptional image quality. The main mirror will be made up from almost 800 hexagonal segments.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Twilight and Sun Pillar in Cerro Paranal
After the sunset, in the beginning of twilight, a partial cloudy sky can promote an impressive combination of beautiful colors. Sometimes, we can see a phenomenon called Sun Pillar. A sun pillar is a vertical shaft of light extending upward from the sun. This great moment was captured in Cerro Paranal, where stands the VLT Telescope.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Stargazing in a Cloudy Sky – Fulldome View of VLT
In this fish-eye fulldome picture, we can see a girl stargazing in a partial cloudy sky, that can promote sometimes the appearance of a beautiful show. Specially, if we have a night of Moonlight that can illuminate and show a strange game of ghostly shapes in the clouds. In the background a starry shy sky is showing a strong presence of reddish airglow. In the foreground, we also can see three of four movable Auxiliary Telescopes availabe in the Very Large Telescope plataform.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Startrail of Yepun VLT Telescope
In the background, at the left side of Yepun VLT Telescope, we can see the Large and Small Magellanic Clouds draged, while in center right of the image, the Zodiacal Light is coming up above the Milky Way that lies behind the horizon of this startrail sky.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Gegenschein, Milky Way and Airglow in a Fulldome Show
In the upper right side of the sky in this fish-eye (fulldome) picture, we can see the Gegenschein, that is a faint brightening of the night sky in the region of the antisolar point. like the zodiacal light, the gegenschein is sunlight scattered by interplanetary dust. Most of this dust is orbiting the Sun in about the ecliptic plane. It is distinguished from zodiacal light by its high angle of reflection of the incident sunlight on the dust particles. In the upper left side, is also visible the Small Magellanic Cloud (SMC) and above it, the Large Magellanic Cloud (LMC). Surrounding the entire sky we can see the presence of green airglow, while, below, the Milky Way is setting in the horizon behind the VLT.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Iridium Flare above the Milky Way in Paranal
Milky Way lies parallel to the horizon in the background of the The Very Large Telescope (VLT) consisting of four Unit Telescopes with main mirrors of 8.2m diameter, known as Antu, Kueyen, Melipal and Yepun (at right). In the left edge of the image and above the Milky Way, we can see what seems to be not a meteor but an Iridium Flare trail.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
VLT Residencia with Orion, Sirus, Canopus and Magellanic Clouds
In the left side of the sky we can see the Orion constellation with the orientation inverted for being seen from the Southern Hemisphere, close to the right, we can find the brightest star of the entire celestial sphere and Northen Hemisphere, Sirius. Moving further up, in the center of the image, is located the Canopus star, the brightest star of Southern Hemisphere. Next to it, is well spoted the Large and Small Magellanic Clouds, a duo of irregular dwarf galaxies, which are members of the Local Group and are orbiting the Milky Way galaxy. In the ground, we can see the white dome of Residencia where astronomers from ESO that are working daily on VLT complex are hosted. In the background we also can see a tone of green and reddish faint light, coming from the airglow phenomenon.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 17/10/2015 from Cerro Paranal, Atacama desert, Chile.
Magellanic Clouds, Auxiliary Telescopes and the Milky Way
In the foregroound we can see the four movable Auxiliary Telescopes of 1.8 meters available in the VLT plataform, operating with the dome open, while in the background near the horizon is borning the Canopus star and above it, in the center of the picture, lies the Large (LMC) and Small (SMC) Magellanic Clouds showing its details and structure. Magellanic Clouds are two satellite galaxies from our own Milky Way. From down and along the upper right corner we can find the beautiful presence of Milky Way, our cosmic home.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Twilight Above the interferometer VLTI
Nautical twilight, above the Very Large Telescope platform. Near the horizon the bright moon is shining above the Antu telescope, the first one near the center. At his left, above the horizon are visible some of the Auxiliary Telescopes (ATs) of 1.8 m aperture. At the right side of Antu, is the telescope Kueyen, with a mirror of 8.2m diameter. Both, are opening and preparing for a night of observations. This telescopes are generally used separately, but can be used together to achieve a very high angular resolution. Looking from outside, they are reflecting a silver color coming from the moon reflection on its metalic surface. In the ground, at the left side of the image, we can see part of the interferometer (VLTI) complex, where the movable Auxiliary Telescopes can be placed.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Sun Pillar in Cerro Paranal
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Magellanic Clouds, Satellite Galaxies From Our Own Milky Way
In the foregroound we can see three of four movable Auxiliary Telescopes of 1.8 meters available in the VLT plataform, operating with the dome open, while in the background near the horizon is borning the Canopus star and above it, in the center of the picture, lies the Large (LMC) and Small (SMC) Magellanic Clouds showing its details and structure. Magellanic Clouds are two satellite galaxies from our own Milky Way.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Yepun Telescope and Magellanic Clouds
In the background, at the left side of Yepun VLT Telescope, we can see the Large and Small Magellanic Clouds, while in center right of the image, the Zodiacal Light is coming up above the Milky Way that is lying behind the horizon.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Fulldome View of Yepun Telescope and Magellanic Clouds
In the background of this fish-eye fulldome picture, at the left side of Yepun VLT Telescope, we can see the Large and Small Magellanic Clouds, while in center right of the image, the Zodiacal Light is coming up above the Milky Way that is lying behind the horizon.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Very Large Telescope Platform in the Twilight
Nautical twilight, above the Very Large Telescope platform. Near the horizon the bright moon is shining above the Antu telescope, the first one near the center. At his left, above the horizon are visible some of the Auxiliary Telescopes (ATs) of 1.8 m aperture. At the right side of Antu, the telescopes Kueyen, Melipal and Yepun, with mirrors of 8.2m diameter, are opening and preparing for a night of observations. This telescopes are generally used separately, but can be used together to achieve a very high angular resolution. Looking from outside, they are reflecting a silver color coming from the moon reflection on its metalic surface. In the ground, at the left side of the image, we can see part of the interferometer (VLTI) complex, where the movable Auxiliary Telescopes can be placed.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred meters. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Stargazing with Passion – Twilight and Crescent Moon on VLT
In this colorful lovely scene captured at the twilight, we can see two skywatchers enjoying his passion about the Universe, with a Crescent Moon shining between the clouds and above the Auxiliary Telescopes (ATs) of VLT.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Milky Way Arm Crossing Antu, Kueyen and Melipal Telescopes
Milky Way arm of gas and dust lying behind the Very Large Telesope Antu, Kueyen e Melipal, while it is capturing the light coming from space. At the right edge of the image, we can see the VLT Survey Telescope (VST), that is the latest telescope to be added to ESO’s Paranal Observatory in the Atacama Desert of northern Chile.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
A Moon Scar in the Sky of Paranal
Impressive sky of Cerro Paranal with an unusual cloudy sky hiding part of the Milky Way, while the moon is trying to shine behind the dark scar of moving clouds, illuminating the closed dome of the Auxiliary Telescopes (ATs) of 1.8 m aperture.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred meters. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
A Planet of Very Large Telescopes
After sunset a partial cloudy sky can promote the appearance of a beautiful show of colors, specially if we have a night of Moonlight that can illuminate and show a strange game of ghostly shapes in the clouds, combined with a starry sky as a background with the Milky Way. In the foreground, we can see in this fish-eye fulldome picture some of the Auxiliary Telescopes availabe in the VLT plataform and the Antu 8.2m diameter Large Telescope.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Work in Progress in Very Large Telescope
In the upper left side of this fish-eye view, we can see the Gegenschein, that is a faint brightening of the night sky in the region of the antisolar point. In the center, the Yepun VLT Telescope is rotating with his astronomy work in progress, while the right side of the image shows the Large (LMC) and Small (SMC) Magellanic Clouds shining bright. A shy part of the Milky Way is also visible along with the right edge.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Milky Way above the Moonset Between Antu and Kuyen Telescopes
In this close-up of the central region of the Milky Way full of gas and dust, star clusters and emission nebulae, lies as the perfect background for the both VLT telescopes Antu (UT1) and Kueyen (UT2 ). In Mapuche language, Antu means “The Sun” and Kueyen “The Moon”, two names that are matching perfectly with the sunny appearance of this bright moonset, reflected in the floor of the VLT platform.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal (UT3 – “The Southern Cross”) and Yepun (UT4 – Venus “as evening star”), which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
A startrail of Magellanic Clouds around the South Pole
In the left side of the sky we can see the trail of Sirius star. Moving to the right in the center of the image, is located the Canopus startrail, as well the draged motion of Large and Small Magellanic Clouds. Below them, the rotational motion of Earth helped to find with precision the right position of the South Pole in the sky. In the ground, we can see the white dome of Residencia where astronomers from ESO working daily on VLT complex, are hosted.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 17/10/2015 from Cerro Paranal, Atacama desert, Chile.
Magellanic Clouds, Zodiacal Light and Gegenschein on a VLT Panorama
In the left side of this – almost 360º- panoramic view, we can see Canopus star and the Large (LMC) and Small (SMC) Magellanic Clouds. Above the horizon, in the beginning of Milky Way arc, are yet visible the bright stars Alpha and Beta Centauri. At the center, lie down the galactic arm with the Zodiacal Light as a background of Antu telescope. Next to the last telescope is clearly visible the elongated diffuse light coming from Andromeda galaxy. In the upper part of the image and opposite direction of Magellanic Clouds, is shining a Gegenschein, that is a faint brightening of the night sky in the region of the antisolar point. Like the zodiacal light, the Gegenschein is sunlight scattered by interplanetary dust. Most of this dust is orbiting the Sun in about the ecliptic plane. It is distinguished from zodiacal light by its high angle of reflection of the incident sunlight on the dust particles. Below right and near the horizon, the Pleiades (M45) star cluster is visible next the tower silhouette.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 16/10/2015 from Cerro Paranal, Atacama desert, Chile.
Twlight on VLT and the Southern Crescent Moon
Twilight behind the Yepun VLT Telescope (at left) and Survey Telescope VST (at right) while they start opening his doors, preparing for a night of research. The faint and inverted crescent moon of the southern hemisphere, can be seen in the center of the image.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Milky Way Arc above the Yepun and VST Telescopes
Milky Way arc of gas and dust lying behind the Yepun (UT4) VLT Telescope, in the foreground, while it is capturing the light coming from deep space. Below left we can see the bright light of the moon and above it, the planet Saturn. At the right edge of the image, we can see the VLT Survey Telescope (VST), that is the latest telescope to be added to ESO’s Paranal Observatory in the Atacama Desert of northern Chile. Above the VST is shinning the bright star Vega, forming in the upper right area, the well known asterism as The Summer Triangle.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
Sunset Between the VLT Telescopes
Sunset rays illuminating with an orange light the left face of Antu Telescope (the first one). In the foreground, at right, we can see the Melipal Telescope few minutes before start opening his doors to the Universe. The faint and inverted crescent moon of the southern hemisphere, can be seen at the left upper edge of the telescope, surrounded by the blue sky of twilight.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
The Great Milky Way above Antu, Kueyen and Melipal VLT Telescopes
In this close-up of the central region of the Milky Way full of gas and dust, star clusters and emission nebulae, lies as the perfect background to framing the right alignment (from left to right) between the VLT telescopes Antu (UT1), Kueyen (UT2) and Melipal (UT3). In Mapuche language, Antu means “The Sun”, Kueyen “The Moon” and Melipal “The Southern Cross”.
The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture. The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 15/10/2015 from Cerro Paranal, Atacama desert, Chile.
A Startrail Fish-Eye View Above VLT Telescopes
A startrail fish-eye view of a draged Milky Way behind a cloudy sky, above the VLT Unit Telescopes in Cerro Paranal. At left, we also can see the light coming from the moonset. The Very Large Telescope (VLT) is a telescope operated by the ESO – European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. The VLT is the world’s most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter, which are generally used separately but can be used together to achieve very high angular resolution. The four separate optical telescopes are known as Antu, Kueyen, Melipal and Yepun, which are all words for astronomical objects in the Mapuche language, with optical elements that can combine them into an astronomical interferometer (VLTI), which is used to resolve small objects. The interferometer is complemented by four movable Auxiliary Telescopes (ATs) of 1.8 m aperture.
The 8.2m diameter Unit Telescopes can also be used individually. With one such telescope, images of celestial objects as faint as magnitude 30 can be obtained in a one-hour exposure. This corresponds to seeing objects that are four billion (four thousand million) times fainter than what can be seen with the unaided eye. The telescopes can work together, to form a giant ‘interferometer’, the ESO Very Large Telescope Interferometer, allowing astronomers to see details up to 25 times finer than with the individual telescopes. The light beams are combined in the VLTI using a complex system of mirrors in underground tunnels where the light paths must be kept equal to distances less than 1/1000 mm over a hundred metres. With this kind of precision the VLTI can reconstruct images with an angular resolution of milliarcseconds, equivalent to distinguishing the two headlights of a car at the distance of the Moon.
Image taken taken in 17/10/2015 from Cerro Paranal, Atacama desert, Chile.